MODIS Based Estimation of Forest Aboveground Biomass in China

نویسندگان

  • Guodong Yin
  • Yuan Zhang
  • Yan Sun
  • Tao Wang
  • Zhenzhong Zeng
  • Shilong Piao
  • Runguo Zang
چکیده

Accurate estimation of forest biomass C stock is essential to understand carbon cycles. However, current estimates of Chinese forest biomass are mostly based on inventory-based timber volumes and empirical conversion factors at the provincial scale, which could introduce large uncertainties in forest biomass estimation. Here we provide a data-driven estimate of Chinese forest aboveground biomass from 2001 to 2013 at a spatial resolution of 1 km by integrating a recently reviewed plot-level ground-measured forest aboveground biomass database with geospatial information from 1-km Moderate-Resolution Imaging Spectroradiometer (MODIS) dataset in a machine learning algorithm (the model tree ensemble, MTE). We show that Chinese forest aboveground biomass is 8.56 Pg C, which is mainly contributed by evergreen needle-leaf forests and deciduous broadleaf forests. The mean forest aboveground biomass density is 56.1 Mg C ha-1, with high values observed in temperate humid regions. The responses of forest aboveground biomass density to mean annual temperature are closely tied to water conditions; that is, negative responses dominate regions with mean annual precipitation less than 1300 mm y-1 and positive responses prevail in regions with mean annual precipitation higher than 2800 mm y-1. During the 2000s, the forests in China sequestered C by 61.9 Tg C y-1, and this C sink is mainly distributed in north China and may be attributed to warming climate, rising CO2 concentration, N deposition, and growth of young forests.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Estimation of Forest Biomass Patterns across Northeast China Based on Allometric Scale Relationship

This study develops a modeling framework for utilizing the large footprint LiDAR waveform data from the Geoscience Laser Altimeter System (GLAS) onboard NASA’s Ice, Cloud, and Land Elevation Satellite (ICESat), Moderate Resolution Imaging Spectro-Radiometer (MODIS) imagery, meteorological data, and forest measurements for monitoring stocks of total biomass (including aboveground biomass and roo...

متن کامل

National Forest Aboveground Biomass Mapping from ICESat/GLAS Data and MODIS Imagery in China

Forest aboveground biomass (AGB) was mapped throughout China using large footprint LiDAR waveform data from the Geoscience Laser Altimeter System (GLAS) onboard NASA’s Ice, Cloud, and land Elevation Satellite (ICESat), Moderate Resolution Imaging Spectro-radiometer (MODIS) imagery and forest inventory data. The entire land of China was divided into seven zones according to the geographic charac...

متن کامل

Estimating forest biomass in the USA using generalized allometric models and MODIS land products

[1] Spatially-distributed forest biomass components are essential to understand carbon cycle and the impact of biomass burning emissions on air quality. We estimated the density of forest biomass components (foliage biomass, branch biomass, and aboveground biomass) at a spatial resolution of 1 km across the Contiguous United States using foliage-based generalized allometric models and Moderate-...

متن کامل

Remote Sensing Estimates of Grassland Aboveground Biomass Based on MODIS Net Primary Productivity (NPP): A Case Study in the Xilingol Grassland of Northern China

The precise and rapid estimation of grassland biomass is an important scientific issue in grassland ecosystem research. In this study, based on a field survey of 1205 sites together with biomass data of the Xilingol grassland for the years 2005–2012 and the ―accumulated‖ MODIS productivity starting from the beginning of growing season, we built regression models to estimate the aboveground biom...

متن کامل

Potential of Landsat-8 spectral indices to estimate forest biomass

Forest ecosystems are among the largest terrestrial carbon reservoirs on our planet earth thus playing a vital role in global carbon cycle. Presently, remote sensing techniques provide proper estimates of forest biomass and quantify carbon stocks. The present study has explored Landsat-8 sensor product and evaluated its application in biomass mapping and estimation. The specific objectives were...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2015